Cambridge International AS \& A Level

PHYSICS

9702/52
Paper 5 Planning, Analysis and Evaluation
October/November 2022
MARK SCHEME
Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.

2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).

4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance
For questions that require \boldsymbol{n} responses (e.g. State two reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked ignore in the mark scheme should not count towards \boldsymbol{n}.
- Incorrect responses should not be awarded credit but will still count towards \boldsymbol{n}.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first \boldsymbol{n} responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, unless the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^{n}$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.
State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1	Defining the problem	
	z is the independent variable and t is the dependent variable or vary z and measure t	1
	keep B and A constant	1
	Methods of data collection	
	labelled diagram of workable experiment including: - pin/rod though hole - supported by a stand - sheet able to oscillate freely - at least one label from copper/sheet, hole, clamp stand, rod, pin	1
	use of stop-watch/timer to measure t (from release to stopping) or use of stop-watch/timer to measure time for the sheet (to stop) oscillating	1
	use of micrometer to measure z	1
	use of rule (r) to measure lengths to determine A and $A=$ length \times breadth	1
	Method of Analysis	
	plot a graph of lg tagainst lg z or equivalent (e.g. In t against $\ln z$)	1
	$q=$ gradient	1
	$K=A B \rho \times 10^{y-\text { intercept }}$ ($K=A B \rho \times \mathrm{e}^{y-\text {-intercept }}$ for $\ln t$ against $\ln z$)	1

Question	Answer	Marks
1	Additional detail including safety considerations	6
	D1 use of cushion / sand box in case sheet falls or use gloves to protect hands from cuts / sharp edges	
	D2 keep (initial) distance between (copper) sheet and (poles of) magnet constant or keep (initial) distance between (copper) sheet and coil(s) constant	
	D3 keep initial displacement (of copper sheet) constant	
	D4 method to ensure initial displacement (of copper sheet) is constant, e.g. initially line up (corner of) plate with fiducial marker/vertical pin	
	D5 relationship valid if a straight line (with y-intercept $=\log \left(\frac{K}{A B \rho}\right)$) is produced	
	D6 repeat measurements of $z \underline{\text { in different positions and average } z}$	
	D7 measure B / magnetic flux density using a (calibrated) Hall probe	
	D8 additional detail on use of Hall probe, e.g. adjust (position of) probe until maximum value or measure B using Hall probe first in one direction and then in the opposite direction and average	
	D9 drawn method to create a magnetic field perpendicular to the area of the sheet, e.g. pair of magnets/horseshoe magnet/pair of coils connected to a (d.c.) supply	
	D10 repeat experiment for each z and average t	
	D11 method to determine ρ, e.g. measure mass with balance and volume $=A z$ and density $=$ mass $/$ volume	

Question				Answer	Marks
2(a)	$\begin{aligned} & \text { gradient }=\frac{c}{2 h} \\ & y \text {-intercept }=-\frac{c}{4 h} \end{aligned}$				1
2(b)	T/ms $\quad \mathrm{f/Hz}$	f / Hz			1
	7.0 or 7.00 ± 1	140 or 143	$\pm(10-30)$		
	2.9 or 2.90 ± 0.2	340 or 345	$\pm(20-30)$		
	1.8 or 1.80 ± 0.1	560 or 556	± 30		
	1.4 or 1.35 ± 0.1	$\begin{gathered} 710 \text { or } 714 \\ \text { or } \\ 740 \text { or } 741 \end{gathered}$	$\pm(40-60)$		
	1.1 or 1.05 ± 0.1	$\begin{gathered} 910 \text { or } 909 \\ \text { or } \\ 950 \text { or } 952 \end{gathered}$	$\pm(80-100)$		
	0.88 or 0.880 ± 0.02	1100 or 1140	$\pm(30-60)$		
	Values of T and f correct as shown above.				
	Absolute uncertainties in T and f correct as shown above.				1
2(c)(i)	Six points from (b) plotted correctly. Must be within half a small square. Diameter of points must be less than half a small square.				1
	Error bars in f plotted correctly. All error bars to be plotted. Total length of bar must be accurate to less than half a small square and symmetrical.				1

Question	Answer	Marks
2(c)(ii)	Straight line of best fit drawn. Points must be balanced. Do not accept line from top point to bottom point. Line must pass between $(2.20,400)$ and $(2.40,400)$ and $(5.20,1000)$ and $(5.60,1000)$.	1
	Worst acceptable line drawn (steepest or shallowest possible line that passes through all the error bars). All error bars must be plotted.	1
2(c)(iii)	Gradient determined with clear substitution of data points into $\Delta y / \Delta x$. Distance between data points must be greater than half the length of the drawn line.	1
	Gradient of worst acceptable line determined with clear substitution of data points into $\Delta y / \Delta x$. uncertainty $=$ (gradient of line of best fit - gradient of worst acceptable line) or uncertainty $=1 / 2$ (steepest worst line gradient - shallowest worst line gradient)	1
2(d)	83.2 ± 0.3 (cm)	1
2(e)(i)	c determined using gradient and c given to two or three significant figures. $c=2 \times h \times \text { gradient }=2 \times(\mathbf{d}) \times(\mathbf{c})(\text { (iii })$	1
	c determined using gradient and given with correct SI unit and correct power of ten: ms^{-1} or cms^{-1}.	1
2(e)(ii)	Percentage uncertainty in c from (c)(iii) and (d) with method shown. $\text { percentage uncertainty }=\left(\frac{\Delta h}{h}+\frac{\Delta \text { gradient }}{\text { gradient }}\right) \times 100$ or correct substitution for max/min methods: $\max c=2 \times \max h \times \max$ gradient $\min c=2 \times \min h \times \min$ gradient	1

Question	Answer	Marks
2(f)	h determined to at least two significant figures from (e)(i) with correct substitution. $h=\frac{3 \times(\mathbf{e})(\mathbf{i})}{4 \times 130}$	1
	Absolute uncertainty in h determined. Correct substitution must be seen. $\Delta h=\left(\frac{\Delta f}{f}+\frac{\Delta c}{c}\right) \times h=\left(\frac{5}{130}+\frac{\Delta c}{c}\right) \times h$ or correct substitution for max/min methods: $\begin{aligned} & \max h=\frac{3 \times \max c}{4 \times \min f}=\frac{3 \times \max (\mathbf{e})(\mathbf{i})}{4 \times 125} \\ & \min h=\frac{3 \times \min c}{4 \times \max f}=\frac{3 \times \min (\mathbf{e})(\mathbf{i})}{4 \times 135} \end{aligned}$	1

